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sFOREWORD

uy Thns lntcnm Teuhmml Stams Report (Contractors Reference No. PWA-3450) w s pre-

red by Pratt & Whitney Aircraft, Dawision of United Aircratt Corporation. bast Hu rd,

. Connecticut. as the first Semiannual Report under United States Air Force Contract F33(615)-
- 681208, Project No. 3066, Task No. 306606. This report was submitted by the Contractor
on-28 June 1968, and covers the Report period from | January 1968 to 28 June 1964,

(U }"iiié ﬁndin'g{ahd Lbndu"sionks of this"re;.)oft ate not deemed as final by the Contractor.,
They are subject to venﬁcanon or revmon in the Fmal Report to be published upon the
mplenon of th:s ¢ ontr.m .

T ir Force Program Momtor is Mr Wayne Taﬂ APTC, Air Force Aeto Propulsion
Laboramr) Wnbthattermn Anr Force Base Ohio, 4543‘%

f‘,,(U) Thns report contams no classnﬁed mformatmn extracted from other classified documents,

;«‘(Ul Pubhcanon of thIS report does not constitute Air Force approval of the report's findings
“or -conclusions.” It is published only for the exchange and stimulation of ideas.

Wayne Tall
Project Engineer
Air Force Aero Propulsion Laboratory
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UNC

UNCLASSIFIED ABSTRACT

() A three-year program was initiated to provide a direct attack on the problem
of attaining high efficiency in highly loaded turbine stages. The goals of this pro-
gram are to develop turbine aerodynamic techniques and design procedures for
efficient, high work, low pressure turbines by means of analytical studies and
cascade testing, and to demonstrate the effectiveness of the techniques and pro-
cedures by designing and testing a two stage turbine that meets or exceeds the
contract stage work and efficiency goals, The first phase effort described in

this report was directed toward defining a turbine design with the highest in-
herent resistance to boundary layver separation and to select boundary layer con-
trol techniques that are best suited for extending the loading limits of the basic

turbine design. A

Distribution of this abstract is unlimited.

(The reverse of this page is blank)
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SECTION 1
INTRODUCTION

(U) The design analysis and optimization of aircraft jet engines have always
involved a trade between increasing turbine efficiency and reducing its sizce and
weight. The bypass turbofan engine has become an attractive propulsion system
for future multi-mission aircraft. The specific fuel consumption of bypass
engines generally decreases with increasing bypass ratio, and it is, therefore,
essential to achieve advances in bypass flow. Increased bypass ratios, however,
require increased fan power supplied by the low pressure turbine. The objec-
tive, then, is to increase fan-drive turbine power, or loading, while maintaining
or improving the turbine aerodynamic efficiency. -

(U) The turbine designer is constrained by certain unique requirements when
designing fan drive turbines, The rotational speed of the low pressure turbine
must be limited in order that the fan tip Mach number does not exceed the limit
for reasonable losses., This problem becomes more critical as the bypass ratio
and fan diameter increase. Applying conventional aerodynamics, when: faced
with a limiting rotational speed, the designer usually increases the diameter of
the low pressure turbine stages or increases the number of stages in order to
obtain more work and still maintain turbine efficiency. Conversely, the reduc-
tion of turbine diameter or solidity results in a lighter turbine, but with a sacri-
fice in efficiency due to losses associated with increased loading. Considerable
gains can be realized by an engine if the size and weight reduction can be made
with no loss in efficiency. Furthermore, because of the time required between
the evolution of new concepts and engine production, turbine technology must be
improved now, so that the desired level of turbo-fan ¢ngine performance can be
achieved for aircraft which will be operational in the 1975-1980 time period.

(U) The objective of the work done under this contract is to analyze and test
concepts which will increase the low pressure turbine loading and maintain or
increase current turbine efficiency levels. The goals of this program are to
develop turbine aerodynamic techniques and design procedures for efficient,
high work, low pressure turbines by means of analytical studies and cascade
testing, and to demonstrate the effectiveness of the techniques, by designing and
testing a two-stage turbine that meets or exceeds the contract stage work and
efficiency goals.

(U) The program has been planned in four phrases over a period of three years.
Phase I will define the basic turbine design and analyze promising increased
loading concepts. Phases II and Il consist of experimental testing to verify and
extend the turbine aerodynamic techniques and design procedures for high loading
levels. Phase IV will subject the aerodynamic techniques and design procedures
to a two-stage rotating rig test.

(U) The results of the Phase I cffort are presented in this report.
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SECTION 11
PRELIMINARY DESIGN EVALUATION (Task 1a)

1. RrPOBJECTIVE

(U) Select turbine designs that indicate an inherent high resistance to flow sepa-
ration at high loading levels,

2. TASK OBJECTIVE

(U) The objective of the initial task of Phase I was to select a turbine design
which would satisty the RFP design paramcters as listed in Table . Based on
these parameters, good turbine design practice and current engine cycles, and
by considering reasonable variations in work distribution, levels of reaction and
solidity, a range of turbine designs was evaluated toward the realization of a
satisfactory turbine design, From the resulting velocity triangles, preliminary
airfoil contours which provided the lowest profile loss and greatest potential for
performance improvement with boundary layer control were defined. In order
to achieve a practical and realistic design, structural problems and interface
requirements at the turbine inlet and exit were considered.

(U) The path followed in the design analysis is shown in Figure 1. The goal of
this analysis was to determine optimum flowpath, stage work split, reaction
level and solidity. The description that follows corresponds directly to the
path of Figure 1.

TABLE I

TURBINE DESIGN PARAMETERS

Number of Stages 2
Average load Coefficient, CL* 2.2
First Blade Tip Wheel Speed 1000 fps
First Blade Inlet Hub-Tip Diameter Ratic < 0.8
Exit Swirl Angle - Without Exit Guide Vane 20°

- With Exit Guide Vane 0°
Turbine Inlet Temperature 1450°F
Airflow 2 50 Ib/scc
Average Stage Efficiency 91'h
Life 10, 000 hr.
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doo FLOWPATH ANALYSIS

{7 The turbine configurations arce constrained iw the contract design parameters
which were shown in Table 1, womelv: load cocfficient, tirst blade tip speed,
maximum first blade inlet hub/tip ratio, exit swirl angle, number of stages,
turbine inlet temperature, stage efiiciency, minimum airflow, and life, Ir
addition to these parameters, values of inlet total pressure and mean inlet swirl
angle representative of typical advanced high pressure turbine exit conditions
were chosen as 100 psia and 20, 1 degrees.  An inlet axial Mach number of 0,3
was taken as representative, based on applicable current engine designs, A
rotational speed of 10,650 rpm was selected as the greatest possible for the
existing turbine test rig, commensurate with the required tip speed and hub/tip
ratio. The resulting airflow was 67,7 Ib/sec, which will maintain airfoil stress
tevels within the specified life requirements.  Trailing odge radii for all airfoils
will be 0. 020 inch and shroud clearances will be set at 0,020 inch. These values
are representative of advanced turbofan uncoolad low pressure turbine designs.

(') When the above design parameters were established, work on the optimiza-
tion of the turbine flowpath and flow velocity diagrams proceeded, The existing
turbine loss system was used to predict resulting aerodynamic performance,

(U) The flowpaths considered in the studv are shown in Figure 2. The inlet
area was bheld constant, since the high pressure turbine flowpath requirements
define the inlet vane length for the low pressure turbine, The airfoil lengths
were then varied from the minimum inlet value to 2 maximum at the exit. The
inside diameter was held constant in order to provide the largest possible blade
velocities.,

(C) The results of the flowpath parametric studv are shown in Figure 3, In
this studv, the turbine efficiency was evaluated for a series of turbines, gener-
ated by the variation of exit area, reaction level and stage work split.  The mean
diameter static pressure reaction was varied from 25 to 5% percent, and the
work split was varied so that 50, 53 or 60 percent of the tota! work wa ;s ex-
tracted irom the first stage. The predicted average stage efficiency was above
the required 91 percent for almost all of the turbines, with a total variation

of only 1 percent (approximate) over the entire studv. It should be noted that
this variation is of the same order of magnitude as the uncertsinty contained in
any single prediction; therefore the apparent differences should not be taken
too literally.

N
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(U) It can be seen that the efficiency was relatively insensitive to exit arca
variation, The design arca of 264 square inches was therefore chosen on the
basis of additional considerations: namely, the turbine exit axial Mach number
and exit swirl angle, The values of exit swirl are such that an exit guide vane
is required to mecet the contract specifications of zero exit swirl angle, Thgl.-
work low pressure turbine optimization studies indicate that these values of
exit swirl are required to maintain high efficiencies, Furthermore, practical
engine designs require exit guide vanes to provide rear bearing support, [t
wias decided, therefore, to include exit guide vanes to attain a reatistie design,
and to suffer the associated loss penalty,
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Figure 2 Flowpaths for Turbine Study
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(1) Variation of the oxit Mach number and exit swirl angle with exit arcea are
shown in Figures 4 and 5, respectivelv, The reason for choosing a slightly
larger exit area than the apparent optimum value was to achieve a much lower
exit Mach number, A low Mach number is required for stable combustion in an
afterburning engine, A lower turbine exit Mach number allows the use of a
shorter and lighter diffuser between the turbine and afterburner. Furthermore,
the maximum work potential of the turbine is limited by the cheking of the exit
guide vanes. Lower turbine exit Mach numbers, therefore, have the additional
benefit of increased work potential, A large range of work potential is required
for an cngine with a variable area jet nozzle, The greater work potential is
also beneficial for growth capability and development margin. An exit axial
Mach number of 0.43 resulted from the selected exit annulug arca. This campares
favorably with values of currently applicable Pratt & Whitney Aircraft engines,
which range, in exit axial Mach number, from 0,36 to 0,46,

10
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2 Pressure Reaction
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Turbine Exit A
/
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\
\
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Figure 4 Variation of Turbine Exit Axial Mach Number With Exit Area at
Various Reaction Levels
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Figure 5 Variation of Turbine Exit Swirl Angle With Exit Area at Various
Reaction Levels

4. STAGE-WORK SPLIT

(U) The parametric study (as was shown in Figure 3), which includes the exit
guide vane loss, indicates that the optimum stage-work split is 50 percent to
each stage at any given reaction level. The exit swirl angle and second blade
exit relative Mach number increase rapidly with second-stage work (see

Figure 6), which indicates large exit guide vane turning requirements and there-
fore high exit-guide vane losses. Therefore, an equal stage-work split was
chosen for the design, and is used throughout the remainder of this study.
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Conditions

3. REACTION

(V) A total of three nominal reaction levels were chosen for the parametric
studv. A mean second-stage reaction of 55, 40 and 25 percent was used. An
additional studv indicated that the first-stage reactions should be lower than the
corresponding second-stage reactions for optimum turbine efficiency and these
were chosen as 45, 30 and 25 percent, respectively, A detailed streamline
analvsis employing controlled-vortex technique was carried out and a summary
is shown in Figure 7, (a) through (¢). The solid line indicates the streamline
controlled-vortex results while the dashed line indicates the comparable free-
vortex distribution. In every case the controlled-vortex designs indicate. a much
greater root reaction than their free-vortex counterparts, which should reduce
corner boundary laver losses.
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(1Y Analvsis of the exit guide vane performance indicated that an acceptable
design could not be achieved for the excessive swirl and Mach numbers which
resulted from the combination of high stage loading and high reaction,  The exit
puide vane intet Mach number and swirl distribution is shown in Figure 3 ard
%, respectivelv,  The swirl angle level was about 38 degrees throughout the
span with the Mach number as high as 0.7 even after the blading angles and
work distribution had been maodified to improve the exit guide vane design, The
problem is that o high solidity vane caseade is required to remove the large
swirl, Thus the high blockage, resulting from the high solidity and the high
inlet Mach number results in a choking condition at the root. Figure 10 shows
the exit guide vane choking muargin for the high reaction turbine, and indicates
that the vane will not pass the required flow at the root, Therefore, the high
reaction turbine design was not pursued further in this program, '

(L) Airfoils having tarce solidity levels for the medium reaction and four
solidity levels for the low reaction were analyzed. For the preliminary evalua-~
tion, the following items were considered to be of signi'ﬁcance in making a
solidity selection: '

e Zwiefel Louad Coefficient

®  Airfoil Pressure Distribution

®  Pressure Rise Coefficient (AP/())

hd Maximum Local Surface Mach Number

High Reaction

08

0.7

0.6 \

0.4 \\

0 20 40 60 80 100

Exit Guide Vane Infet Mach Number

Span, Percent

Figure 8 Variation of Exit Guide Vane Inlet Mach Number With Span
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(U The airfoils designed in this Task required approximately six conteur re-
finements cach before adequate pressure distributions resulted, and thov e
referved to as preliminary airfoils in what follows,  The solidity levels were
taken in 157 increments about the advanced level referred to as normatl in this
studv, The resulting pressure distributions, convergence ratios, radii of curva-
turce and airfoil sections for all solidities and reactions are found in Appendin i,

{U) Due to the high-stage loading, the turbine blading has higher than normat
Mach numbers, ard lower than normal airfoil convergence. This is particu-
larly true at the root, since the available wheel speed is lowest at this paint,
Consequently, the blade root region is potentially a high loss region, especially
for a low reaction design. The difficulty is apparent in the low reaction airfoil
pressure distribution shown for the preliminary airfoils in Appendix I. The
pressure distributions for the low reaction blade roots of the first and second
stages indicate that for both blades the lack of convergence has resulted in
very low suctivn surface pressures near the leading edge. Consequently, the
gas must decelerate over nearly the entire length of the surface, resulting in
an unstable flow condition, The high Mach numbers also introduced the danger
of large shock losses. A comparison of the significant design parameters for
the low and medium reaction designs of normal solidity is tabulated in Table II.
Normal solidity is defined by what are considered advianced state-of-the art
Zwiefel load coefficients shown in the table.

TABLE I
PRELIMINARY AIRFOILS
LOW REAC TION

NORMAL SOLIDITY

Pitch Load Uncovered Maximum
Secticn Chord  Coefficient  Turning AP/q  Mach Number
First Stage Vane Root 0,942 0,910 14,68 0.363 1.230
First Stage Vane Tip 0,952 0,694 13,18 0. 109 0,840
First Stage Blade Root 0,635 0,510 16. 00 0.368 1.108
First Stage Blade Tip 0,925 1.095 14,38 0.200 0,300
Second Stage Vane Root 0.760 0.955 13.43 0,378 1.265
Second Stage Vane Tip 0,945 0.769 12,16 0, 084 0,918
Second Stage Blade Root 0,555 0.878 17.60 0,598 1.410
Second Stage Blade Tip 0,920 1,106 16. 00 0,293 0,931
PAGE NO. 14
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TABLE I (Cont'd)

MEDIUM REACTION

NORMAL SOLIDITY '

Pitch 1.0ad Uncovered Maximum
Section Chord  Coefficient  Turning AP/ Mach Number
First Stage Vane Root 1, 003 0,950 13.8 0,259 1,112
First Stage Vane Tip 1,147 0.799 13,0 0,126 0, %20
First Stage Blade Root 0,683 0,840 17.4 0.337 1. 108
First Stage Blade Tip 1,088 1.100 13.8 0.210 0.830
Second Stage Vane Root 0,708 0,958 13.3 0,308 1.200
Second Stage Vane Tip 0,967 0.810 12.9 0.179 0,833
Second Stage Blade Root 0,566 0.900 14.8 0,488 1.305
Second Stage Blade Tip 1.193 0.941 12.8 0,250 1.043

The surface Mach numbers and pressure rise coefficients tend to be highest for
both the vanes and blades at the low reaction levels, It was, therefore, con-
cluded that the medium reaction turbine design has the greatest potential to
attain high turbine efficiencies. The remainder of the study, then, is concerned
only with 50/50 work-split medium-reaction turbine designs.

(U) The medium reaction turbine design was selected hased on the airfoil
surface pressure distribution analysis. The selcction of medium reaction was
further substantiated by the existing turbine rig test data. Test results from
various single stage rotating rigs indicate that the optimum turbine efficiency
is achieved at blade root reaction levels of 40 to 60 percent,

(U) It should be noted that the predicted turbine efficiency for the turbines at
various reaction levels indicates (refer to Figure 3) that a higher efficiency can
be attained at the lowest mean reaction, for all stage-work splits. This is
basically due to the fact that the current loss system does not include the efiects
of corner boundary layer separation and Mach number. A fall-off in efficiency
should occur at low reaction because the airfoil pressure distributions indicate
that separation would take place in the root region. On the other hand, the
efficiency would fall off for very high reaction turbines because of the associated
high exit Mach numbers from the blades and additional camber in the second-
stage vane and exit guide vane, A comparison of some of the significant vector
diagram parameters is presented in Figures 11 and 12 for turbines having the
three reactions mentioned above,
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(U) In summary, based on the fact that the high reaction configuration had an
impractical exit guide vane design, and that the Tow reaction conhguration had
potentially high loss blade voat airfoil sections, the tinal contigurations resulting
trom this initial task were for the medium reaction level,  The medium reaction
velocity diagram data is presented for the first stage in Table HI and for the
second stage in Table IV,

TABLE I

FIRST STAGE TURBINE DATA - MEDIUM REAC T1ON

Inlet Total Pressure (Pto) psia -~ 1os,.0

Intet Total Temperature (Tto) (FRYy - 1910, 0

Gas Flaw (Wg) (Ibs/sec) - 67.7

Total’/total Efficiency (Ngg) - 90,5

Turbine Work (Al) (Btu /1b, ) - 67.3
Root Mean Tip
Stage Total Pressure Ratio (p“‘/Pt ») 1.8y ~1.%5 1, %0
Vance Ftatic Pressure Ratio (' s0/Pgy) 1. 66 1.54 1.42
Blade Static Pressure Ratio (Ps1/ f;»h;) 1,32 1.30 1.4
Vane Inlet Gas Angle (a,) 61,1 3.6 61,6
Vane Exit Gas Angle ( ay) 26,5 2.7 15,3
Vane Camber ( 8 ) 89,4 wi.T T,
Blade Inlet Gas Angle ( 8 ) 37.6 39,0 15,4
Blade Exit Gas Angle ( 82) 24,7 24,7 24,7
Blade Camber (8 ) 117.7% 116,23 Fou,
Stage Exit Swirl Angle 10,2 I B T
Blade Inlet Absolute Gas Velocity P Is20, 0 1653, 0 Lixl, 0
Blade Exit Absolute Gas Velocity (C) 12, o nI2,40 KOs, 0
Blade Inlet Relative Gas Velocity (W) 1214, 0 2N, n 34,0
Blade Exit Relative Gas Velocity (W) 6=, 60 1499, 0 1414, 0
Blade Inlet Tangential Veloeity Y 7010 935, 0 UCR T
Blade Exit 'l‘:lngct)m:ll ,\'clucit\' (U 3 1 NG2L U toas, o
Blade Reaction ( s1-1 53/!’ o-Pg2) 25,9 30,1 37.5

Vane Inlet Absolute Mach \'umb(‘r (\!., b) t, 315 0, 2090 G4, 279

Viane Exit Absolate Mach Number (My, b a0, 919 0, 854 0,770
Blade Inlet Relative Mach Number (\!1!‘0” o, 622 0, 169 0,017
Blade Exit Relative Mach Number (Marel) i, KOO 0,780 0,730
Interstage Axial Mach Number 0,571 320 0, 298
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TABLE IV

SECOND STAGE TURBINE DATA - MEDIUM REACTION

Inlet Total Pressure (Py,) (psia) - 56.8
Inlet Total Temperature (Ty)) (R) - 1663.1
Gas Flow (W g (lhs/sec) - 67.7
Total “Total l fficiency (Ntt) - 91.5
Turbine Work (AH) (Btu/1b) - 67.2

hoot  Mean  Tip

Stayge Total Pressure Ratio (Po/Pyo) 1.88 2,05 2,09
vane Static Pressure Ratio (P ‘o/p;,]) 1,57 1.5¢ 1.4
Blade Static Pressure Ratio (Pg1/p_ ) ” 1,32 1.5 1.61
Vane Inlet Gas Angle (e ) 37.3 50.0 61.9
Vane Exit Gas Angle ( a q) 30.6 24.5 22,6
Vane Camber (6 ) 1121 105.5 95,5
Blade Inlet Gas Angle { 8 1) 45,4 47.1 67.0
Blade Exit Gas Angle (8 =) 37.0 28.9 22.3
Blade Camber (9 ) 97.6 104. 0 90,7
Stage Exit Swirl Angle ( a »5) 537.7 37.9 59.8
Blade Inlet Absolute Gas Velocity (C) 1798.0 1570.0 1355.0
Blade £xit Absolute Gas Velocity (Ca) 1178.0 917.0 711.0
Blade Inlet Relative Gas Velocity (W) 1242. 0 824.0 506.0
Blade Exit Relative Gas Velocity (Wo) 1655.0 1591,0 1586.0
Blade Inlet Tangential Velocity (Uj) 693.0 891.0 1090.0
Blade Exit l'mgcntml Velocity (Ug) 693.0 906.0 1112.0
Blade Reaction (Ps17Ps2/pg -Pgy) 30,3 10.8 8.5
Vane Inlet Absolute Mach Number (Mg,y) 0.554 0.385 0.292
Vane Exit Absolute Mach Number (M) 1,003 0.869 0,765
Blade Intet Relative Mach Number (Mypqp) 0.698 0. 446 0.269
Blade Exit Relative Mach Number (Mjpet) 0.944 0,904 0.892
Interstage Axial Mach Number 0. 568 0.433 0.337

6. SOLIDITY

(U} Once the reaction level was chosen for the design, the solidity had to be
determined. The important preliminary airfo’' parameters were tabulated for
normal solidity levels in Table 11 and are show. for the medium and low solidity
in Table V',
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TABLE Y

MEDIUM REACTION = MEDIUM SOLIDITY 157 LOAD COFFFICIENT)

Pitch 1oad Uncovered s Maximum

Section Chord  Coefficient _Turning AP/Q Mach No,

First Stage Vane Root  1.152 1.090 14,7 0.337 1,170
First Stage Vane Tip 1,317 0. 920 15.4 0.236 0,854
First Stage Blade Root 0. 792 0. 966 17.7 0.413 1.160
First Stage Blade Tip 1,262 1,275 14.8 0,309 0, 884
Second Stage Vane Root 0. 809 1.100 14. 4 0,301 1.250
Second Stage Vane Tip 1.105 0.930 14.2 0.248 0,892
Second Stage Blade Root 0.648 1.035 16.4 0.548 1.361
Second Stage Blade Tip 1.366 1.078 13. 4 0.317 1.092

MEDIUM REACTION - LOW SOLIDITY @307, 1.LOAD COEFFICIENT)

First Stage Vane Root 1.296 1.235 16.0 0.444 1.270
First Stage Vane Tip 1.482 1,038 18.5 0.369 0.970
First Stage Blade Root 0.880 1. 092 18.5 0.495 1.230
First Stage Blade Tip 1,403 1. 419 16.8 0.421 0.955
Second Stage Vane Root 0.913 1.245 16.0 0.511 1.390
Second Stage Vane Tip 1.247 1. 052 15.2 0.282 0.907
Second Stage Blade Root 0. 743 1.170 18.4 0. 656 1.464
Second Stage Blade Tip 1.565 1.236 14.7 0.387 1.148

The lowest solidity possible for which a separation free flow can be predicted
was to be selected in order to ensure the required turbine performance. As
part of Task la, two preliminary turbine designs (rof. Figure 1) had to be
chosen, after which a boundary layer analysis was to be applied to determine
each design's inherent resistance to flow separation,

(U) Since all of the three loading parameters increase toward flow separation

- with reduced solidity, one turbine configuration was solected which met all of

the present turbine design criteria, that is, the medium reaction normal solidity
configuration which was shown in Table II. Thig configuration would ensure

no separation, and minimize the risk of falling below the target efficiency. The
second configuration chosen would have solidity levels below present experionce.
Depending on the results of the airfoil refinement study, the solidity would be
selected as low as possible in accordance with our ability to design separation
free airfoil sections.

(The reverse of this page is blank)
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SECTION TH

ARFOIL CONTOUR ANALYSIS (Uask 1in

1. REFP ORIECTIVE
(U Design airfoil contours having the highest resistance to flow separation,
2, TASK ORJECTIVE

(U) The turbine flowpith and vector diagram study described in Section 1 resulted
in an optimum turbine with medium reaction level, equal stage-work =plit and with
an clevation such that the exit annulus area is 264 square inches, Three levels of
solidity for each airfoil were considered and as part of the Task La effort, prelim-
inary airfoil sections were designed but were found to be too erude to make a logi-
cal choice of those airfoils which needod further refinement, Therefore, the neces-
sary detailed airfoil contour analyvsis was conducted during this Task,

3. PRELIMINARY AIRFOIL ANALYSIS

(U) The preliminary airfoils for the medium reaction at three solidities and at
three spanwise sections are shown in Appendix I. For convenience the pertinent
aerodvnamic parameters are tabulated in Table VI. An average of six calcula-
tions had to be made to arrive at the airfoils shown in these hgureq. These root,
mean and tip airfoil sections for both vanes and blade R cording
to the following considerations:

° Suction and Pressure Surface Pressure Distributions
® Suction Surface Radius of Curvature

° Passage Convergence

e Airfoil Cross Section,

(U) The pressure distribution is the most important preliminary indicator used in
the evaluation. Values of suction surface pressure coefficient (AP/Q) and diffusion
paramcter (F), based on the minimum and exit pressures, are the determining
factors in the preliminary evaluation, Values of (AP/Q) above 0,5 are taken to in-
dicate separating airfoils. At the same time, convergence is examined to insure

a uniformly converging channel. The suction surface radius of curviture is also
important since the airfoil surface pressure distribution is highlv sensitive to this
parameter, and therefore it is the most basic design parameter to be varied when

PAGE NO 23
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modifeing the pressure distribution,
sonic flow regions exist which is true for most of the resulting airfoils,

UNCLASSIFIED

This is particularly true when some wuper-

Thne design

of the airforl cross section must be examined from a structaral standpoint, A
radial arvea distribution or taper must be selected such that the stress fevels are
aceeptable from the standpoint of endurance,

MEDIUM REACTION PRELIMINARY AIRFOIL SUMMARY

No,

of Foils,
Z

TABLE VI

Exit Mach
Number, My AP/Q

First Stage Vane Root
Normal Solidity
Medium Solidity
Low Solidity

First Stage Vane Mean
Normal Solidity
Medium Solidity
Low Soliditv

First Stage Vane Tip
Normal Solidity
Medium Sotidity
Low Solidity

First Stage Blade Root
Normal Solidity
Medium Solidity
Low Solidity

First Stage Blade Mean
Normal Solidity
Medium Solidity
Low Solidity

First Stage Blade Tip
Normal Solidity
Medium Solidity
Low Solidity

G2
H4
48

62
54
48

62
54
48

116
100
90

116
100
90

116
100
90

0,949 0,259
0.949 0,337
0.942 0,443
0.852 0.213
0.852 0,348
0.852 0,456
0.770 0.126
0.770 0.235
0.770 0.369
0. 890 0.337
0.890 0.413
0.890 0,495
0,788 0.331
0.788 0.418
0.788 0.527
0.730 0.210
0,730 0.303
0.730 0.416

PAGE NO 24

UNCLASSIFIED

£

0.235
0,296
0.384

0.20%
0.311
0.396

0.034
0.225
0.331

0.169
0,365
0.423

Max, Surface

Mach Number

1.112
1,170
1,270

0.966
1.058
1.144

0,820
0,884
0.970

1,108
1.160
1,230

0.968%
1.031
1.119

0.830
0. 884
0. 955
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TABLE VI (Cont'd)

MEDIUM REACTION PRELIMINARY ATRFOIL SUMMARY

No. of Foils, F.xit Mach Max Surface
Y/ Number, M, AP/Q K Maeh Number

Second Stage Vane Root

Normal Solidity R0 0. 990 0,308 0,275 1,200

Medium Solidity 70 0,990 0,391 0,336 1.280

Low Solidity 62 1,000 0.511 0.415 1.390
Sceond Stage Vane Mean

Normal Solidity 80 0,870 0,227 0.214 0. 999

Medium Solidity 70 0.870 0,314 0,289 - 1,060

Low Solidity 62 0.%870 0,362 0,328 1. 097
Second Stage Vane Tip

Normal Solidity S0 0.765 0,179 0,185 Q. 853

Medium Solidity 70 0,765 0,248 0.252 0.892

Low Solidity 62 0.765 0.282 0.271 0, 907
Sccond Stage Blade Root

Normal Solidity 126 0.944 0.488 0.412 1.305

Medium Solidity 110 0,944 0,548 0.449 1.361

Low Solidity 96 0.944 0.656 0,503 1.464
Secontl Stage Blade Mean

Normal Solidity 126 0.904 0.263 0.244 1. 067

Medium Solidity 110 0.904 0.378 0.304 I. 156

Low Solidity 96 0,904 0,495 0.423 1.256
Second Stage Blade Tip :

Normal Solidity 126 0,892 0. 260 0.236 1. 051

Medium Solidity 110 0.892 0.321 0.290 1. 092

Low Solidity 96 0.892 0.387 0.346 1.148

UNCLASSIFIED

(U) Having established satisfactory preliminary turbine airfoils, the next step in
the airfoil contour design was a preliminary two-dimensional houndary laver cal-
culation intended to evaluate the boundary laver characteristics of each airfoil
root section at the three solidities. The root sections tend to be most prone to
separation and should receive the most attention. The results of these analyses
and available correlations of cascade diffusion parameter data determined the
selection of airfoils for refinement and final boundary laver calculations.
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4, PRELIMINARY BOUNDARY LAYER ANALYSIS

() Pwo dimensional houndary laver caleulations were generated for the prelim-
inary suction surfice root sections at normal, medium and low soliditv,  The pur-
pose of these caleulations was to assist in the selection of practical lower sotidity
limits prior to airfoil contour refinement,

(1Y Two boundary laver caleulations were made for each root section and these are
shown in Tables VI and VIH, The first assumed no transition and continued either
until laminar scparation was indicated, or the end of the airfoil was reached, Table
VIl gives the boundary laver parameters at the last calculation point prior to separa-
tion, The two~dimensional criteria used to determine if an airfoil section is at

the verge of separation was a drag coefficient of 0,001 or less. Values of Reynold's
Number based on momentum thickness at the point of transition are also shown,
This value was not used as an indicator of transition but is presented for reference
onlv. When compared to the Tetervin's incompressible flat plate, zero turbulence,
zero pressure gradient value of approximately 187, it is noted that the airfoil values
were alwavs above this number,

TABLE VII
LAMINAR SEPARAVION AT ROOT

Distance on Separation

Surface to Revnolds Shape " Drag
Separation, Number, Factor Coefficent
Solidity Inches Re 6 Pg/Py H Cy
First Vane
Medium 0.768 406 0.442 3.523 0. 00083
Low 0,675 391 0.400 3.851 0, 00062
First Blade
Medium 0.427 292 0.458 3.840 0. 00064
Low 0. 544 335 0.423 3,836 0, 00070
Second Vane
Medium 0.440 228 0.390 3,572 0.00172
Low 0,737 311 0.330 3,779 0,00126
Second Blade
Medium 0.601 272 0.368 3,713 0.00138
Low 0.535 260 0.318 4,198 0.00092

UNCLASSIFIED

pace no. 26

UNCLASSIFIED




UNCLASSIFIED

TABLE VHI
TURBULENT BOUNDARY LAYER = ROOT SECTION

Distance on Transition

surface to Revnolds Data Shape Drag
Transition, Numbers Point, Factor  Coefficient
Solidity Inches Re ¢ " Smax PPy 1 Cy
First Vane
Medium 0,650 350 87.6 0, 315 2,05 0. 00261
Low 0,550 320 88.5 0,560 2,03 0,00233
First Blade
Normal 0,225 185 87.0 0,547 2,02 0,00308
Medium 0,252 197 86,9 0.569 2,07  0,00239
Low 0.351 239 87.0 0,581 2,14 0,00193
Second Vane
Medium 0,440 228 88.5 0,465 2.23 0, 00260
Low 0,487 251 88.4 0.488 2,27 0, 00228
Second Blade
Normal* 0,170 - 125 89,0 0.463 2.30 0,00282
Mcdium* 0.200 139 89,0 0,466 2.38 0,00212
Low* n.228 147 89,0 0,478 2,36  0,00105
. s D
#*Separation Apparently at About 94 percent of Smax.

() The second boundary laver calculation assumed transition to turbulent flow at
the first minimum on the suctioa side pressure profile, No turbulent boundary laver
separation was indicated except near the trailing edge of the second blade root,

Table VHI presents a summary of these turbulent houndary laver calculations at
approximately 90 percent of the total suction surface length, prior to the predicted
sharp recompression near the trailing edge. Cascade test data indicates, however,
that the actual measured recompression is much softer than that indicated by the
calculation, The validity of the pressure distribution calculation used is questionable
for the last 8 percent of the airfoil surface. Therefore, within the limitations of

the analvsis, none of the airfoil root sections indicate turbulent separation.
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(L) The effect of transition point location was evaluated for the first vane and tabu-
fated in Table IN, Moving the travsition point fore or aft of the fiest minimum
pressure pomnt did not have a significant effect on the turbulent boundavy liver be-
havior,

TABLE INX

EFFECT OF MOVING TRANSITION POINT
FIRST VANE ROOT SECTION

Low Solidity

Distance to Drag

Transition, 7 Smax  Coetficient

Inches Cp 5 0 _El_ 6
0,475 83,5 0. 00225 0.00602  0,00294 2,044 0.0295
), 350 $S8.5 0, 00233 0. 00567 0,00278 2,039 0,0283
0,675 N3.5 0. 00246 0, 00516 0,00253 2.035 0,0258

Medium Solidity

0,575 87.5 0. 00249 0, 00491 0.00240 2,047 ~ 0, 0250
0.650 87.5 0, 00261 0.00447 0,00218 2,051 0,0228
0,763 87.5 0, 00271 0.00404 0,00196 2,059 10,0210

() Selected plots of static-to-total pressure ratio and drag coefficient as functions
of airfoil suction surface distance are shown in Figures 15 through 22, The medium
and ow solidity root sections of the preliminary turbine airfoils are shown, since
these solidities are more critical than the normal solidity. Furthermore, a com-
parison of the pressure ratio and drag coefficients of all three solidities for the
second-stage blade root, the most critical airfoil section in the turbine, are shown
in Wigure 22 and 24, T2 earlyv laminar separation indicated for normal solidity is
probablv caused by lack of contour refinement relative to the more highly loaded
airfoils,

() The drag coefficient is a significant parameter which indicates turbulent bound-
ary laver behavior., Some trends on the variation of the drag coefficient (at the 90
percent point) with solidity is shown for vane roots in Figure 25, and for blade roots
in Figure 26, For two-dimensional turbulent houndary lavers, it is doubtful that
separation can be avoided with drag coefficients 0,001 or less, Therefore, on a two~
dimensional basis, the low sotidity second blade root appears to be on the verge of
separation, whereas the root section boundary layers of the other foils exhibit some
residual strength at low solidity,

PAGE NO. 28
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5. SELECTION OF AIRFOILS FOR CONTOUR REFINEMENT

(U) Since the two-dimensional boundary layer caleulations previously discussed do
not account for three-dimensional flow phenomena which cause separation in the
suction surface corners prior to two dimensional scparation on the airfail surface,
the two-dimensional practical drag coefficient of 0,001 is insufficient to account

for the three-dimensional characteristics. There are insufficient data and inade-
quate analytical tools available at this time to quantitatively define the three-dimen-
sional boundary layer. Local shock losses due to local transonic flow for the foils
under consideration may trigger even an earlier separation, Referring to Figures
25 and 26, a drag coefficient of 0,002 corresponds closely to the medium solidity
for the second blade and the low solidity for the first three airfoils. Therefore,
these solidities are considered to be the reasonable lower limits for the low solidity
turbine designs. Based on this houndary layer analysis, then, and in arder to pro-
vide the necessary range of selection to be considered for the Phase 1l design, the
following preliminary airfoils were selected for contour refinement: first vane,
first blade and second vane - normal, medium and low solidity; secand blade -
normal and medium solidity.

6. FINAL AIRFOIL CONTOUR REFINEMENT

(U) The selected preliminary airfoil contours were refined to further improve
pressure distribution and increase resistance tc flow separation. Modifications

of the contours required several iterations on each section to arrive at the desired
pressure distribution, For each solidity, the airfoil radius of curvature, cross
section and passage convergence were varied to minimize suction surface pressure
coefficient (AP/Q) and the rate of recompression in the trailing cdge region. The
contour which was considered best suited to attain the goal, results in a suction
surface pressure distribution that drops rapidly from the leading edge to a rela-
tively flat minimum static pressure, and gradually slopes up to the exit pressure
at the trailing edge.

(U) To show the steps taken for each airfoil would result in a voluminous collection
of airfoils and their related parameters, As an illustration, however, the refine-
ment of the first blade root section at low solidity is presented in Figure 27. The
initial airfoil was the one which was referred to as preliminary, but, as previously
noted, it has already undergone several calculations. The refinement steps were

as follows:

Step 1. Lowered airfoil leading edge to shift loading from front portion back
toward the minimum radius of curvature region,

Step 2. Increased trailing edge wedge angle to decrease radius of curvature
and reduce pressure gradient at trailing edge.
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Step 3. Lowered peak of the suction surface (minimum radws of curvature
point) to reduce loading in that area,

Step 4. Repeated Step 3 until suction surface pressure profile was flat as

possible,
MEDIUM REACTION
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’ The change in the airfoil shape from preliminary to final configuration is shown
in Figure 28,
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;— (U) The final airfoil contours for the root, mean and tip sections for the selected
= airfoils are shown in Appendix II. In addition, for each airfoil the surface pressure
- distributions and suction surface radius of curvature distributions are shown. When
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the preliminary and final values of the airfoil pressure rise coefficients are com-
pared, the values for the final contours are not in all cases lower than the prelim-
inary vatues, The discrepancy is due to the fact that the computational procedure
was changed between the time that the preliminary calculations and final calculations
were made, The change was in the method by which the effect of streamline diver-
gence was evaluated in the airfoil pressure distribution deck. The final method

of calculation is felt to be more reliable than the original.

(U) Some general observations concerning these airfoils are that: pressure dis-
tributions of the second stage airfoils were more difficult to refine than the first
stage; it was more difficult to attain flat suction surface pressure distributions
for low solidity airfoils, especially at the root sections; the contour refinement
problems become more difficult as the surface maximum Mach number increases,
with the result that the hump in the suction surface pressure distribution becomes
difficult to eliminate.

7. FINAL AIRFOIL CONTOUR BOUNDARY LAYER CALCULATIONS

() Two-dimensional boundary layer calculations were made for the final refined
contours of the lowest solidity designs, These included the airfoils of the first
three rows with load coefficients 30 percent above normal (low solidity) and the
second blade with a load coefficient of 15 percent above normal (medium solidity).
It was possible to effect some additional improvement by the refinement procedure
over the preliminary airfoils as noted in the results tabulated in Table X. In this
table the drag coefficients are compared for the preliminary and final airfoils, In
addition, the drag coefficients for the root sections of these airfoils are shown in
Figures 29 through 32.

TABLE X

EFFECT OF ROOT CONTOUR REFINEMENT ON DRAG COEFFICIENT

Preliminary Final
Airfoil Solidity % Smax Drag Coefficient, Cp
First Stage Vane Low 88.5 0.0023 0. 0030
First Stage Blade Low 87.0 0. 0019 0. 0029
Second Stage Vane Low 88.4 0. 0023 0.0018
Second Stage Blade Medium 89,0

0. 0021 0. 0023
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SECTION IV

BOUNDARY LAYER CONTRCG & SURVEY (Task lc)

1. RFP OBJECTIVE

(U) Make a preliminary selection of boundary layer control techniques suitable
for reducing corner separation. :

2, TASK OBJECTIVE

(U) A comprehensive review of the literature on losses in turbomachinery was
conducted to provide the background for a preliminary selection of boundary
layer control methods applicable to this program. Particular emphasis was
directed toward three-dimensional boundary layer characteristics and control
methods related to turbine cascades. The literature was reviewed for in-
formation on control methods conforming to the following design criteria:

® applicability to high aspect ratio, unconoled turbines with no external
fluid source or 8ink available, i.e., no blowing or sucking;

L effectiveness ir reducing secondary flow or corner boundary layer
separation;

L] manufacturing feasibility;

L acceptable structural integrity of turbine.

3. LITERATURE SOURCES

(U) Tha literature sources listed below were searched, including bibliographies
in the three listed books. Literature received was reviewed and classified into
three categories: (1) relevant and significant information about boundary layers
and their control in uncooled turbines (Ref. 1 through 23); @) background and
supporting information pertaining to secondary losses in turbomachinery
(Bibliography, 1. Secondary Flow in Turbomachinery); and (3) relevant but
inconsequential information related to losses in turbomachinery (Bibliography,
2. Losses in Turbomachinery-General). References in the first category are
included in the List of References and reviewed in the following paragraphs.
Reports and articlss in the second and third categories are listed in the Bibli~

ography.
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Aeronautical Enginoering Indox T47-195%
AGARD 1966

Apphod Mochanies Reviews 1O 19=1967
Applied Scienco & Technology 199%=1966
ANTIA - DDC 1963=1967
DDC Saarch (Jan, 17, 1068) 19571967
Engineoring Indoex 19151967
Intl. Acerospace Abstracts 196114964
NACA=NASA-Star 1915=1967
Nueloar Science Abstracts 1949=-1947
Physics Ahstracts 1400=1966
Zeitschrift Fur Flupwissenschaften 9611967

UAC Card Catalog

FRDC Card Catalog

Schlichting, Dr. Hermann, Boundary laver Thoorv. MceGraw«liill,
New York, 1960

Lachmann, G. V., Boundary laver & Flow Control: Its Principles
& Applications, Voi. a1, Pergamon Press, New York, 1961

Horlock. J. .. Axial Flow Turbines; Fluid Mechanies and Ther-
modvnamics, Buttcrworths, London, 1966

4. SECONDARY [OSSES

(U) Secondary losses in cascade flow are defined as all losses not accounted
for by the skin-friction losses on the airfoils and annulus walls., These losseas
can be githor direct or indirect. The direct losses include losses from trail-
ing odge wakes and blockage, tip clearance, increased skin-friction in corners
and soparation of corners. annulus walls and airfoils., The main forms of
indiroct loscas ard passage blockage, and deviations from design flow anglos.

(C) The roecent literature indicates that the predominate secondary loss occur-
ring in cascade flow is due to the separated boundary lavers in the suction sur-
faco corners (3, 15, 19)%  The corner boundary lavers soparate mainty due to
the presonce of the annulus wall, and the accumulition of low energy fluid in
the corners. Tho low energy fluid vhich accumulates in the suction surface
corners from elsewhere in the cascadue, Figure 535 | causes additional flow -
arca blockage and mainstream deflections (7. 15). The main cause of this
accumulation is the migration of the annulus boundary layers duo to the cross-
channel prussuro gradient (6, 15, 20). The mainstroam rotation caused by
turning through the cascade contributes to the accumulation in both suction sur-
faco corners whereas the radial prossure gradiont causes some slight migration
to the inner annulus corners (6, 15).

——ee
* Number in parentheses designates References at end of roport.
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Figure 33 Turbine Cascade Secondary Flows

(U) Some general characteristics of corner boundary layer flow are included in
the works of Gersten and Schlichting (4, 16, 17, 19). Transition from laminar
to turbulent flow and the start of separation occur earlier in the corner than on
the adjoining walls. The skin friction drag of turbulent corner flow is greater
than for plates and separation occurs when the kinetic energy in the boundary
layer cannot overcome the pressure increase in the direction of flow. Gersten
(4) states that the Euler number is the characteristic parameter for flow with

a constant adverse pressui'e gradient, but does not adequately explain its signif-
icance with regard to determining the point of separation for turbine airfoils.
Further investigation of this parameter should be useful since the Fuler number
is a ratio of the local pressure gradient to the local freestream kinetic ensrgy.

(U) The corner separation phenomena was observed in cascade flow (11). It
was founc that boundary layer separation began in the intersection formed by
the convex surface of the blade and the adjacent side wall. The complete wall
boundary layer did not separate. Instead, during the initial backflow, the wall
loss was confined to the annulus and airfoil intersection and gradually spread
inward over the blade convex surface, manifesting itself as a blade tip stall
condition. On the basis of these ohservations, it was recommended that cor~
rective measures bhe applied at the corner rather than at some distance from
the wull.
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‘ (U) Several genoral conclusions regarding secondary losses which wero ro-
. portod in the literature are:

L The inlet boundary laver does ndt appreciably affect the corner
secondary losses (¥, 17, 20)

L4 The corner secondary loss is independent of Reynolds number (17)

L The corner secondary logs is independent of the blade length for
aspect ratios preater than 2,0 (19)

] Secondary losses increase with Mach number for subsonic flow (19).
5. BOUNDARY IAYFR CONTROL

(U) Boundary laver control is not a recent innovation (18), but relatively
little has been accomplished towards controlling the boundary layers in turbo-
machinory. Boundary layer control is the term applied to varis>us methods of
favorably influencing the boundary layer and its resulting effect on the free-
stream. The most common means of houndary layer control is by either
blowing or sucking (4); howevar, for this study these methods have been ex-
cluded since the control tochniques are to be applied to an uncooled turbine
without the complexity of externally routing gas into, or out of, the main flow
passages. ‘The most promising houndary layer control techniques should be
those that improve conditions in the ond wall region since the good turbine
dosign procedures will insure high efficiency on the mainstream portion of the
airfoil, i.e., controlled vortexing will optimize the radial work distribution,
and careful airfoil contouring will provide gradual suction surface pressure re-
covery. The statement by Carter (1) that "no amount of attention to secondary
effects can undo the consequences of a mediocre mean section design' is
‘uspecially valid for this program due to the relatively large aspect ratios, 3.3
to 7. 7 of some of these airfoils.

e (U) For purposes of discussion, information on boundary layer control found

' in the literature survey is divided into two classifications: aerodynamic con-
touring and local momentum alteration. The former category includes modifica-
tion of the cascade pressure distribution through airfoil profile changes or end
wall contouring. The latter includes control methods that produce a direct

local effect on the boundary layer.

a. Acrodynamic Control Methods
(1) Comtrolled Vortex Design

(U) Experimental evaluation of the controlled vortex concept (3) indicates that
this technique can be successfully applied to roduce turbine end wall losses.

o)
[
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(U) Controlled vortexing entails precise control of the blade row spanwise
vortex distribution to prevent excessive corner losses. Evaluation of tur-
bine performance data indicated that high root losses were closely associated
with the performance of low-velocity-ratio, highly loaded stages, and that

the local reaction level could be increased to solve the problem of poor root
performance. Testing rosults from a variable area turbine provided addition-
al information relating to the problom of low root efficiency associated with
low reaction. With the urbine nozzle 1n a closed position, stage reaction was
less than zero and the spanmvise cfficicncy profile for this condition revealed
extremaly poor root performance. As thu nozzle was moved to its design
position, the reaction became slightly positive and a very substantial increase
in root efficiency resulted. Opening the nozzle still further increasod the
rcot reaction to about 30 percent and resulted in an additional incruase in
efficiency at the root, in spite of the fuct that the blade relative Mach number
had increased appreciabty.

(U) Application of controlled vortexing to turbines has been accomplishoed
through streamline design analysis. With reaction at the blade mean section
fixed, the camber is gradually reduced toward the root and gradually increased
toward the tip sections, rosulting in increased root reaction and decreased tip
reaction when compared to a froe vortex design. The higher root reaction re-
duces the adverse pressure gradient imposed on the root suction surface cor-
ners. The decreased tip reaction results in a lowar Mach number, and honce
lower loss at the tip suction surface corner. The results of the present study
reveal in detail why this should be the case.

(2) End Wall Contouring

(U) The eoffect on aerodynamic performance of contouring the vane tip end wall
was investigated in an experimental turbine ). These experiments indicated
that the efficiency of stages with low aspect ratio can be substantially increased
by contouring the end wall. The ond losses in the guide vane cascade were
reduccd by decreasing the velocity in the passage section where maximum
turning occurs. - This condition reduces the pressure difference between the
suction and pressure surfaces, and consequently the intensity of the secondary
flows. This reduced pressure difference in the forward passage saction is in-
dicated in figure 34 . Also, the end wall contouring formed a convergent flow
passage at the exit which reduces the magnitude and length of the advaerse
pressure gradient on the suction surface corners and produces a favorable
effect on the boundary layers on the end walis of the channel. The performance
data indicated that, for the low aspect ratio airfoils tested, end wall contouring
offectiveness increased as aspect ratio was reduced. With an aspect ratio of
unity, the losses were reduced 0.5 to 1 porcent and with an aspect ratio of 1/3,
2.0 to 2.5 percont. The effectiveness of end wall contouring was also a function
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of the amount of constriction. The loss measurements also indicated that the
effects of the outside diameter wall contouring were most noticeable near the
inside diameter wall, a probable consequence of the low airfoil heights tested.
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Figure 34 Pressure Distribution

(3) Local Uncambering

(U) It has been suggested (10) that by varying the blade camber in acccrdance
with the inlet velocity distribution, correction can be made for the phenomenon
of overturning near the walls. It was anticipated that the reduction of camber
at the blade tips which this method necessitates will also favorably affect the
position of the separation point on the blade surface in the corners. The
approach taken in this report directs attention towards the reduction of span-
wise variations in outlet angles. This technique should directly reduce the
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secondary flow velocities and ond loss within each airfoil row, and the greater
uniformity in the inlet conditions at tha succeeding airfoil row should give con-
siderable improvement therc. Further, thore is the possibility of reducing
the tenduncy for separation from tho blade surfaces, this being the primary
aim in secondary flow control.

(U) Blades were evaluated with a constant camber angle over the center throe-
quarters of the span (figure 35 ). The camber angle at each ond decrcased
linearly to zero.  The evaluation indicated the total pressure losses were re~
duced with this camber arrangement and the terdency to delay corner separa-
tion was supported. Reducing the caniber to zero at the wall appears (o have
more than corrected the overturning effect. It was suggested that a camber
angle at the wall greater than zero might have led to a greater uniformity of
discharge angle over the whole span.

(U) This method of boundary layer control is essentially local controlled
vortexing in the root and tip regions. Further work is required to deter-
mine if this technique is structurally feasible for blade airfoils with higher
camber angles than the 10 and 20 degree uscd in this reference.

B ===y MIDSPAN CONTOUR

END WALL CONTOUR
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Figure 35 Local Uncambered Airfoil

£AGE NO 2D

UNCLASSIFIED




LA

UNCLASSIFIED

(4) Forward-leaning Blade Tip

(U) An attempt to control the migration of the low energy boundary layer
fluid to the suction surface corner was investigated by leaning the blado

tip forward in the direction of mainstrcam flow while maintaining the leading
edge axial position (22). This is shown in figure 36 .

RELATIVE
GAS
STREAM

AIRFOIL
ROOT

ROTATION

UNCLASSIFIED

AIRFOIL TIP/

TOP VIEW

Figure 36 Forward Leaning Blade Tip

(U) Detailed measurements of the inlet and outlet flow patterns showed a
marked leakage of fluid around the trailing edge of the forward leaning blade
tip from the pressure side of one passage to the suction side of the adjacent
passage. The trailing edge cross-flow apparently leads to vigorous mixing

of high-energy fluid with the wall-boundary-layer fluid accumulating toward
the suction side of the passage. Previous measurements demonstrated that
such a mixing pattern did not occur at the trailing edge of straight blades.
Carbon-black traces of boundary layer flow on blades and wall showed that
suction surface stall had been eliminated almost completely with the forward~

leaning tip.

(U) The overall loss evaluation of the forward-leaning tip was rather incon-
clusive. Passage losses were reported to be less with the forward-leaning
tip than with straight blades; however, additional losses occurred due to the
fluid mixing at the trailing edge. It was concluded that the total losses for the
forward-leaning tip airfoil were slightly lower than a straight tip airfoil, but
not significantly different.
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b, Tocal Momentum Alteration Methods
(1) Vortex Generators

(V) ‘The value of the mixing dovice known as the vortox gonerutor has bheen well
established at subsonic speeds through many succossful applications (13). The
gonerator is simply an enorgy convorter in the form of a lew aspect ratio, semi-
span wing mounted with an angle of attack on a surface. The generator accom-
plishes a conversion of translational energy to rotational energy in the form of a
trailing tip vortex. The induced volocitios associated with the trailing vortices
promote re-onergization of the boundary layer by an exchange of kinatic onorgy
from the main stroam to the boundary layur, thus making it more resistant to
separation in an adverse pressure gradiont,

(U) The mixing energy contained in the trailing vortex releascd by a vortex
gonorator is directly chargoablo as induced drag. This induced drag is largor
than the profilo drag associated with the generator when operating at high {ift
coefficionts and therefore represents a large proportion of the drag introduced
by the generator.

(U) Theorsatical and experimental work was undertaken by the United Aircraft
Research [aboratories to evaluate the relative mixing characteristics of
various types of vortex generators. The experimental work (5) was carried
out in the UAC Pilot Wind Tunnel diffuscer by evaluating the offects of the var-
ious generators on the boundary layer velocity profiles and momentum losses
at a station approximately 70 boundary layer heights downstream of the gen-
orators. These tests indicated thai boundary layers, which varied only a small
amount, could kest be handled with the rectangular shape, whereas the tri-
angular generator adjusted more oasily to a changing boundary layer condition.
The vortex shed by the triangular shape shifted with the boundary layer and
maintained a position close to the boundary layer edge. This vortex loeation
was found to bo the most favorable for efficient mixing.

(U) The boundary layer re-energization which may be accomplished through
the use of vortex generators has encouraged the oxtension of generator applica-
tions to transonic speeds where shock induced separation has given rise to a
wealth of special aerodynamic problems. Among these are such phenomena as
buffeting, stability and trim changes, and loss in control effectiveness, which
are inherent by-products of separation, The effects of vortex genaerators on
the aerodynamic characteristics of a typical upswopt model wing ware detor-
mined at transonic Mach numbers in the UAC eight-foot wind tunnel to verify
the results of the model tunnel study (13).

ot
-1
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(U) ‘The performanco charactoristics and dusign roguiremoents for transonic
vortex generators parallel those established for low spoed application except
for differencos in generator location and generator geometry. The bhest lo-

cation for generators to supress shock induced separation was found to be 25
boundary layer thicknesses upstream of the shock. The effectiveness of the
rectangular generators in the transonic application is sensitive to thickness

ratio and is reduced significantly at low ratios (2 percent),

(U) Vortex generators intended to delay shock-inducoed separation on conven-
tional compressor airfoils were found to be detrimental to cascade perform-
ance 21). Tests were made without the vortex generators fitted, and with

a single spanwise row of vortex generators at 15 percent chord from the
leading edge. It was thought that the 0. 005 inch high base of the vortex
genorator was promoting boundary layer separation and increasing losses.
The tost was repeated with the base fitted into a recess milled in the blade
surface. With the base flush with tho blade surface the vortex gonerator drag
was roduced by about one-third; however, they were still detrimental_to the

cascade porformance. Tho cascade was also tested with the vortex generators

fitted to tho blades at 6.2 percent chord. The losses were greater with the
vortex generator at this position than at the 15 percent chord position. It was
concluded that, for the configurations tested, shock induced boundary layer
separation was delayed but the overall offect of vortex generators was detri-
mental to performance.

(2) Slots

(U) ‘The incorporation of slots in airfoils can be utilized to produce two
methods of boundary layor control. The existing boundary layer can be
energized by introducing high energy fluid from the pressure side of the air-
foil {14, 23), or the existing boundary layer can he replaced by another
boundary layer originating within the slot (12).

(U) Blade tip slotting to prevent wall stall has been investigated (14). The
major conclusion was that blade loading in tip regions may be increased by
removing low energy fluid and reducing separated areas on the blade surface,
i.e., improving pressure gradients along the profile. However, accuracy of
the static pressure measuremonts in the region of interest were not accurate
enough to provide detailed data.

(U) It was evident that unless tho slot entrance extended well into the rogion
of high-energy fluid, the mass flow through the slot was insufficient to affect
the suction surface conditions. It was also shown that with the slots tested,

a highly convergent slot passage was necossary to obtain high exit velocities.
This resulted in a vory small slot exit arca. When this exit are2 was reduced
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the mass flow was also reduced. The resuiting small amount of high-energy
fluid had insufficient effect on flow conditions. A mirimum slot size of 3/16
inch was recommended for an airfoil with a 2. 8 inch chord. ‘

(U)- Tho use of partial span blade slots in the proximity of the end walls -
intended to control separation was once of several control techniques reportod

in Reference 23, The first blade tested had a slot confined to the blade extrom-
ity from the pressure side to the suction side. The slot intersected the suction
surface in the region where flow reversal started. The investigation of the - -
slot effect on flow conditions indicated that the reverse flow apposing the jet ,
was of such strongth that it reversed the jet direction shortly after it issued )
from the slot. Tho result of the interaction was that the flow disturbances .
over the blade were intensified. Increasing the slot depth to 12 percont span

and changing the slot contour did not appeir to reducc this condition.

(U) A second test blade had a slot located approximately three-quarter chord
longths from the leading edge. This test blade was ineffective since the slot .
was located within a stalled area even for moderate values of staggor anglo.
The same characteristics of jet flow reversal and increased separation were
observed as with the first test blade. . /

(U) A compressor annular cascade investigation conducted to provide criteria
for the design of slotted rotors and stators also indicated the importance of
slot location (12). Initial tests of the unslotted stator disclosed that the
minimum pressure and separation points occurred at 12 and 385 percent of the
chord, respectively. Based on these data, two axial slot locations were sel-
ected. The forward location was at 55 percent of the chord on the suction sur-
face, which was approximately half-way between the minimum pressure point
and the flow separation point. The rearward point was selected at 75 percent
of the chord, which was slightly ahead of the flow separation paint for the un-
slotted configuration. In addition to siot location, several vartations of slot
geometry were testod at each slot location.

(C) For the forward slot location, the stator wake loss coefficient varied

between 17 and 43 percent of the unslotted loss coefficient, depending on the -
slot geometry utilized. For the rearward location, the loss coefficient

ranged between 76 and .37 percent of the unslotted loss coefficient, depending

on the slot geometry emploved. This result is attributed to twa factors: =

L The available pressure drop across the stator vane (pressure-to-
suction surface) at the 75 percent chord slot location wits less than
the pressure drop across the vane at the 53 pereent chord slot

location.

L] The suction surface boundary layer at 75 percent chord is thicker
than at 55 percent chord.
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(U) The first of the above factors results in a relatively low slot flow velocity
and thus reduces the Coanda effect. 1he thicker boundary layer requires a
larger pressure gradient normal to the suction surface to induce freestream
flow toward the surface. Those factors tend te support the result that the rear
slot wake was shifted toward higher turning but not reduced in size.

(U) Data for both slot locations indicated about the same increases in lift
cocfficient and air turning angle. Tho slot configuration with the lowest wake
loss coefficient showed incroases in lift coefficient and turning angle of about
10 percent and 2 degrees, respectively.

(U) The effect of slot geometry on performance was less pronounced than the
offoct of slot location. The geometry parameter that produced the most signif-
icant reduction in wake size for a forward slot configuration was the rear
section leading edge radius. When this radius was increased from 0. 028 to

0. 056 in., the wake loss coefficient docreased from 0. 031 to 0, 012,

(U) The Coanda radius was the most significant geometry parameter that was
varied for the rear slot coufiguration. A slight increase in Coanda radius
produced a slight docrense in wake loss (0. 063 to 0. 053). Subsequent increase
in Coanda radius resulted in a large increase in wake loss coefficient (up to

0. 130). This change in wake loss suggests the probability of an optimum
Coanda radius. Insufficient data were obtained to evaluate the optimum Coanda
radius for the forward slot location.

(3) Flow Inhibitors

(U) A boundary layer control device that appears particularly applicable to
cascade flow is the so-called dam, or flow fence. Essentially it is a fin
mounted perpendicular to the convex surface of the blade near the sidewall,
or on the end wall, and lying parallel to the mainstream flow direction. Its
primary purpose is to mechanically hinder the mainstream rotation, boundary
layer migration, and corner vortex flow that force the separating sidewall
boundary layer inward over the suction surface of the blade.

(U) An attempt (23) was made to reduce the radially inward spread of flow
separation over the convex surface of a blade by placing a2 normal dam, or fin,
on this surface near each extremity, the length being parallel to the flow
direction. These acted as constraining boundaries, confining any spanwise
flow to rarrow regions between the dams and sidewalls.

(U) The first test blade had thin wooden dams extending along approximately
three-quarters of the chord length from a point ahead of the most forward
extent of the stalled region on the blade to the trailing edge, and the maximum
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height was approximately 40 percent of the gap between blades. A test was run
in which a single blade with these dams was placed in cascade with the stundard
assembly in order to compare flow patterns.  An improvement of the flow ovor
tho blade surface betwoon the dams was apparent from flow pattern comparisons.
Further tests wero run with variations in fength, shape, thicknoss, maximum
height, displacemont from the blade extremities, and alignment relative to the
sidewalls. Better flow patterns wero obtiained from a length extending from
just ahead of the separated region to the trailing odge than from gither full
chord length or partial chord longth dams starting behind the forward oxtont

of the soparated region. Low dams (10 percent gap) were found to he inef-
foctive in halting the inward spread of separation, while those of Laight equal

to 50 percent gap vibrated so badly that they blew off before tests could ba
completed. The best flow pattern was obtained from a blade having dams

close to the sidewalls with the trailing edge slightly convergent toward midspan.
A curious effect was observed when dams cut from metal shim-stock were
substituted for the wooden modeis. These scemed to have no effect on the
secondary flows, and the flow pattern appeared unchanged. One test wias run
with a thick dam having a curved surface facing the sidewall and a flat surface
facing midspan in an attempt to induce a local flow acceleration in the houndary
layer at the blade~wall juncture by means of a constricted passage, hut the

flow patterns gave an indication that the anticipated results did not mate:ialize.
To measure the effect on the cascade pressure-rise, a cascade of blades with
the dams installed was assembled and run for a full range of stagger angles at
approximately 0.34 Mach number. The results of these tests show that the
addition of dams reduced the pressure recovery for all stagger angles tested.
At a stagger angle of 24. 8 degrees the pressure-rise ceoefficient was reduced
15 percent and the deflection angle was increased 1 degree.

(U) Another investigation with flow fences (15) showed that sheetmetal fences
on the blades were not always effective in hblocking the radial flows to reduce
the accumulation of low-momentum fluid at the inner wall. The fences incrcas-
ed the wetted surface area in the flow passages which introduces some addition-
al viscous losses. Separaticn of the modification-induced losses from the
original low-momentum fluid losses was not readily feasibie. Accordingly.

the changes in size of the inner wall loss core were used as criteria for eval-
uating the effectiveness of the modifications, and as a basis for interpretation
of the results.

(U) As‘expacted, none of the modifications used affacted the losses near the
outer wall under any condition, since tho flow-fence was downstream of the
outer wall radial flows. The flow~fence modification was tested at a hub Mach
number-of 0.94, Comparison showed that the flow fence apparently had no
noticeablo effect on the inner wall loss core. The flow evaluated at a Mach
number of 1. 46 indicated a sharp reduction in size of the inner wall loss core
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as a result of the flow fence. Tho erircumferentially averagod loss, plotted
radially over one=half the blads height indicated & chango in the loss distribu-
tion; however, an overall integrated blade loss comparing the performance
with, and without, the flow fence was not presented.

(U) Flow fences are currontly buing investigatod by Pratt & Whitney Aircraft.
Tests are being conducted on a singlo stage comproessor rig with flow fonces
attached to the end wall platforms. At this time, testing and evaluition has
not been comploted.

(1) Fillets

) A secondary flow visuatization study in cascades was reported (7) in
which one of the configurations tested had fillots at the intersections of the
airfoil and the ond wall, 1t was observod that the fillots apparently had little
offeet on the formation of the passage vortices and that similar rosults were
obtained with larger fillots, However, no performance data was prosented to
- indicate the offect of fillots on the pressure loss through the cascade.

(U) ‘the topic of hillets was discussed with Professor H. Schlichting. He was
of the opinion that corner fillots should have the cffoct of shifting the corner
flow condition from the three-dimensional condition duscribed by Gersten (4),
toward the one which is predictod by two-dimensional boundary layer theory.
This would delay the corner scparation to a point downstream.

6. SELECTION OF BOUNDARY IAYER CONTROL METHODS
a. Characterization of Cornor Problem

(V) Thore appoar to be two related mechanisms that contribute to large acro-
dynamic losses in the end wall regions of turbino cascades. The first involves
a thickening of the boundary layer in tho suction surface corners as a result of
both the boundary layer growth in the mainstroam flow direction, and the
migration of low momentum fluid along the annular walls to the suction surface
corner region. The second is separation of the boundary layer in the suction
surface corners (long before airfoil boundary layer separation) due to abnormal
thickeaing resulting from the ond wall and the adverse suction surface pressure

gradient. Although the literature contains several recent reforences to corner -

separation as the prodominant effect, there is also evidence indicating that
high end wall losses without corner separation may be possible. Therefore,
the selection of boundary layer control methods for this program was influ-
onced by the need to consider the two possible situations, one having high ond
wall loss without separation, and the other with large separated regions in the
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corer. Without separation, the only appiarent loss mochanisn to attuck is the
end wall boundiory laver migration toward the suction surface corners, It
substantial sepaeation doos occur, the use ot local manentam alteration methods

should bo effective.
b, Prehminary Seloction of Control Methods

U) All of the airfoils considered for this program wero dosignet using con-
trolled vortexing techniques which are now standard practice at Pratt & Whatney
Aircraft, Othor methods of boundary layer control which can be apphied to
reduce secondary flow effocts are ond wall contouring, local uncambering of
the airfoil root and tip sections, and flow foncos. End wall contouring and

local uncambering provide the additional benefits of locally reducing tho ad-
verse prossure gradient in the suction surlaco corners and thus also contribute
to the prevention of corner separation.

(U') Methods that appear to be suitable for proventing suction eornor separa-
tion by local momentum alteration include vortex gencrators, corner slots
and corner fillets. These techniques have little or no direct offect on the
secondary flow problem.

(U) The literature survey revealed little design information that could be used
to apply these boundary layer control methods. Design procedures required
for controlled vortexing are well established. However, except for vortex
generators, no systematic experiments to estahlish ompirical design criteria
for the remaining methods have been reported. Preliminary analyses for end
wall contouring, vortex genvrators, corner slots, and fillets are discussed
under Task 1d. (Section V).

(The reverse of this page is blank)
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SECTION V

PRELIMINARY BOUNDARY LAYER CONTROL ANALYSIS (Task 1d)

1. RFP ORBJECTIVE

(') Provide initial guide lines for the application of corner boundary layer con-
trol technique,

2. TASK OBJECTIVE

(U) Prelfminary analyses were conducted to provide initial guidelines for the
application of four corner boundary layer control methods to the turbine airfoils
designed in Section ITI, Task 1b. Due tc the limftations of available analytical
techniques and the lack of data in the literature, it was not possible to absolutely
rank the boundary layer control techniques in terms of effectiveness for each
sclected airfoil design as orginally intended. It was, however, possible to gain
condiderable insfght into the probable usefulness of each promising technique.
Since the airfoil pressure distributions are all very similar, such a ranking
would be of doubtful value. The preliminary analyses conducted for end wall
contouring, vortex generators, corner slots, and fillets are discussed in the
following paragraphs.

3. END WALL CONTOURING

{U) The proper application of end wall contouring offers potential benefits in
reducing both end wall boundary layer migration and corner boundary layer
separation. Cascade tests reported in the literature for low agpect ratio vanes
indicated a substantial effect of end wall contouring on the opposite wall. How-
ever, for the higher aspect ratio airfoils of this contract, the effects of end wall
contouring are expected to be confined to a region near the wall. A quasi-three-
dimensional numerical apalysis of the effects of end wall contouring on cascade
static pressure distributions was attempted. This approach involved super-
imposing a turbine streamline analysis on a two-dimensional cascade pressure
distribution calculation. This procedure was developed by the company in order
to analyze the effects on pressure distribution of contouring both root and tip
end walls of a first-stage turbine vane (Figure 37). The results of this prior
analysis, shown in Figure 38, illustrate the dual benefits of wall contouring on
the root section: (1) the lower pressure difference between pressure and suc-
tion sides in the forward part of the channel, which reduces boundary layer mi-
gration to the suction surface corners, and (2) the reduced adverse pressure
gradient on the suction surface in the trailing edge region, which tends to delay
the onset of separation to a point closer to the trailing edge. A convenient way
to interpret the effects of end wall contouring is that the local increase of blade
area results in local unloading of the airfoil, which is highly desirable.
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(U) Two obstacles were encountered in attempting to apply these existing com -
puter programs to the analysis of the contract turbine airfoils, The first is
that the existing procedures cannot handle supersonic meridional velocities.
Local regions of supersonic flow exist on most of the highly loaded airfeils
being considered in the current program. The second problem concerns the
convergence of the existing computer programs, For flow paths with relatively
small radii of curvature (e.g., contouring of walls for high aspect ratio air-
foils), the current numerical techniques allow the streamlines to shift too much
bhetween successive iterations and a convergent solution is not obtained.

(U) A good deal of company sponsored work is now being undertaken on this
problem. One altermnative procedure uses the matrix through-flow method of
calculation (H. Marsh, R&M No. 3509, Brit. Aero. Res. Council). Although
calculations by this method were not available for inclusion in this report, work
will be continued in this area to assist the design of contoured walls for the
remainder of this contract study. ' .

(U) At this point, it can only be concluded that end wall contouring is a promising
boundary layer control technique.

4. VORTEX GENERATORS

(U) Vortex generators have proved to be useful devices for the prevention of
boundary layer separation in inlets and diffusers, and on aircraft wings where
relatively thick boundary layers are encountered. The vortex generator is
essentially a mixing device which strengthens the boundary layer by an exchange
of energy with the mainstream. Pairs of vortex generators that produce counter-
rotating vortices are generally more efficient (higher lift/drag ratio) than co-
rotating arrays. The vortex generators must be located upstream of the separa-
tion point to allow sufficient time for mixing to take place.

(U) Experimental investigations of vortex generators to develop effective bound-
ary layer control have resulted in the following design criterfa:

® Rectangular or triangular shaped vortex generators are the most effi-
cient,

® The triangular shaped geometry is more tolerant to variation of the
boundary layer thickness & from the design condition.

®  Rectangular vortex generators should have a chord and span dimension
of 1.18. Triangular vortex generators should have a chord of 2.5 and
aspanof 1.,25§.

PAGE NO 68

UNCLASSIFIED




UNCLASSIFIED

® The vortex generators should have a thickness-to-chord ratio of 6 to
8 percent, an incidence angle of 18 degrees, and a lateral spacing of
3.5 & . They should be located 12 to 15 & upstream of the separation
point. If the separation is shock induced, the distance upstream should
be increased to 25 6 .
(U) Boundary layer separation in turbine cascades could begin in the suction
surface corners. Therefore, placement of vortex generators for this applica-
tion should be in the vicinity of the corner as shown in Figure 39. For the
high work, low pressure turbine of this contract, the root section, suction side
contours all have a favorable pressure gradient for the leading 20 percent of
x/B which will prevent separation until after this point. The root section bound-
ary layer thickness distribution calculated for the four low solidity airfoils is
indicated in Figure 40, Based on this thickness and the design information
presented above, the vortex generator span and chord dimensions are indicated
in Table XI for the first vane and second blade of the low solidity turbine. These
dimensions are typical for all four airfoils.

TABLE X1

VORTEX GENERATOR DIMENSIONS (INCH)

Afrfoil First Stage Vane Second Stage Blade
x/B Span Chord Span Chord
0.2 0, 0037 0,0075 0. 0081 0, 0162
0.4 0. 0062 0.012 0. 0137 0. 0275
0.6 0.0119 . 0. 023 0.019%4 0, 0388
0.8 0. 0232 0. 046 0. 0281 0. 0562

(U) The vortex generator should have a sharp leading edge and a thickness of

6 to 8 percent of the chord length, For the largest generator listed above the
thickness would be 0, 0045 inch. The fabrication and at tackment of conven-
tional vortex generators of this small size is not feasible. The possibilify exists
that some other type of device would induce mixing of high energy fluid in the
boundary layer and produce an effect similar to the vortex generator. However,
the design and development of such a device is beyond the scope of this study.
Therefore, based on the fabrication and attachment problems, vortex generators
are not recommended for boundary layer control on the turbine airfoils of this
contract.
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Figure 39 Vortex Generator Placement
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- 5. CORNER SLOTS

(U) Boundary layer re-energization has been applied successfully to diifus: ¢s
where an external source of high pressure ai: could be used. However, the
use of external air is not allowed under the ground rules established for the
contract turhine. Slot flow only channels air from the pressure side of the air-
foil to the suction side. Since the total pressure is essentially the same on

both sides, there is insufficient power available for re-energization of the
suction surface boundary layer. However, an alternative mechanism considered
practical is the displacement of the old boundary layer by a new one initinting
at the slot as illustrated in Figure 41, The slot boundary layer will he thinner
and therefore more resistant to separation than the original boundary layer due
to the shorter surface distance available for growth,

(U) Boundary layer calculations were made for a corner slot at the root sec-
tion of the second stage, low solidity blade (Figure 42) to evaluate the
potential of this control method for reducing corner separation. The tendency
for corner separation increiases after the gage point on the suction surface due
to the increased rate of recompression starting at that location, and to the re-.
sulting rapid growth in boundary layer thickness. Therefore, the slot opening-
on the suction surface was located upstream of the gage point. Two basic
assumptions in the analysis were that the slot flow does not substantially alter
the original pressure distribution around the airfoil, and that the slot boundary
- layer grows just as though it were immersed in the undisturbed invisecid flow.
It was further assumed that reasonable slot widths-would be sufficient to pre-
vent merging of the slot boundary layers prior to discharging on the suction sur-
face. Merging of the boundary layers within the slot would result in a thick
boundary layer reaching the suction surface, thus reducing the effectiveness of
the intended boundary layer replacement.

(U) Figure 43 (a) shows the growth in momentum thickness for the two different
assumed pressure distributions of Figure 43(b). The growth of the laminar
boundary layer within the slot can > seen to be mainly dependent on gurface
distance rather than the pressurc gradient within the slot. This fortunate re-
sult implies that the slot shape is not critical and relieves the need for tight
manufacturing tolerances which would be difficult to achieve in the small slots
being considered. The momentum thickness of the new boundary layer at the
gage point is approximately 0. 000 inch compared to 0, 0014 inch for the original
unslotted airfoil.
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(U) Since the suction surfiace veloeities are predominantly supersoric, the slota
will usually be choked, which provides better control over the slot floww .and
simplifics associated ealculations, As a result of the above reduction in i e
point momentum thickness, the momentum thickness at the trailing edge was
reduced from 0, 003 to 0, 001 (Figure 44) and the drag coefficient was {rcreased
from 0, 0012 to 0. 0022 at 92 percent x/B, These results indicate a substanti!
strengthening of the trafling edge boundary laver through the use of slots,

(U) Typical corner slot applications are shown in Figure 43 for the low
solidity first-stage vane and second-stage blade root sections. The comhined
thickness of the slot boundary layers is approximately 0,020 inch. Therefore,
a slot width of 0,030 inch was selected to ensure that the slot boundary layers
do not meree, The aft gide of the slot is faired into the suction surface at the
gagze point to provide a smooth entrance for the new houndary layer formed fn
the slot. The slots should be located as close as possible to the end wall, A
spanwise slot height of 0,20 inch is considered adequate for the low pressure
turbine airfoils under consideration. This height is about 10 times the two-
dimensfional boundary layer thickness on the airfoil surface which sould insure
sufficient coverage of the corner flow region, without substantially affecting
the original pressure distribution or the main foil boundary layer.

(U) Corner slots appear to he both practical and effective devices for the con-
trol of corner boundary layer separation,
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Figure 44 Effect of Momentum Thickness at Gage Point on Momentum Thick-
ness and Friction Coefficient at 92 Percent Chord Point
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SECOND STAGE BLADE
LOWSOLIDITY
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Figure 45  Typical Corner Slot Applications
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6., CORNER FILLETS

(U) The flow along a corner of two relatively flat surfaces intersecting at u
right angle, such as the turbine airfoil and the end wall, has a boundary layer
quite different from that of the two-dimensfonal boundary layer on the adjacent
surfaces. At the intersection of the two surfaces, a mixing of the two houndiry
layers occurs with u strong mutual interference and excessive skin friction.

The transition from Laminar to turbulent flow occurs further upstream near the
cornec, rather than on the adjacent surfices, The boundary layer in the corner
is also cxposed to a severe adverse pressure gradient which causes it to thicken
and separate rapidly, The corner flow phenomena was discussed with Professor
H. Schlichting and his opinion was that corner fillets should have the effect of
shifting the corner flow condition toward the two-dimensional boundary layer
condition present on the adjacent surfaces, .

(U) A suitable analytical technique has not been developed for the complex
three-dimensional cotner flow. Therefore, a simple model of the corner
bounda ry layer was constructed to guide the initial sizing of fillets (Figure 46 ),
The basic hypothesis is that boundary layer behavior in the corner can be made
to approach that of & two-dimensjonal boundary layer by reducing the area of
wetted surface in the corner.

|
BOUNDARY LAYER\z\

MAIN FLOW

R - FILLET RADIUS
& - BOUNDARY LAYER THICKNESS

MAIN STRE AM SURFACE AREA - FILLET

UNCLASSIF.IED

BOUNDARY LAYER WETTED SURFACE AREA (Aws)

Figure 46 Simplified Corner Boundary Layer Model
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(U) The difference between the corner boundary layer wetted surface area (Aws)
and the main stream surface area (Amsg) s a function of fillet radius (Rp) and
boundary layer thickness (§) as expressed in the following equation:

This area difference is reduced to 10 percent with a fillet radius equal to 10 § ,
Using this criterion, the fillet radius as a function of axial location is indieated
in Table XII for the suction side roots of the first vane and second blade.

TABLE XII
FILLET RADIUS (INCH)
x/B_ First Stage Vane Second Stage Blade
0.2 0,030 0. 065
0.4 0. 050 0.110
0.6 0.095 0155
0.8 0.185 0.225

The point of tangency of the fillet with the root platform is indicated in Figure
47 . The fillets are faired back into the airfoil leading and trailing edges to
avoid abrupt wall geometry changes in these locations. The reduction in flow
area (blockage) for the fillet of this type is only 0,46 and 0. 55 percent for the
first vane and second blade, respectively, as illustrated in Figure 48 . Con-
sequently, there should be little disturbance of the original potential flow pres-
sure distribution due to their presence. Although the literature offers little
encouragement for their effectiveness, corner fillets appear useful at least in
the event of corner boundary layer separation.
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FIRST VANE

SECOND BLADE

Figure 48 Suction Side Root Fillet-Axial View of Passage From Rear

7. TENTATIVE RANKING OF BOUNDARY LAYER CONTROL METHODS

{U) It has already been noted that the corner boundary layer loss can manifest
itself as either an unseparated or a separated flow, and that techniques exist
which should control either phenomenon., As the solidity of any row of turbine
airfoils is creased, the corner boundary layers will move towards separation.
However, contour refinement at any given solidity reduces the possibility of
separation in the suction surface corners. Due to the fact that no analytical
techniques for predicting the complex behavior of the corner boundary layers
exist, the net effect of the contour refinement at the high loadings of this study
cannot be determined in advance.
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(U) The application of boundary layer control methods t o the Phase Il cascade
testing will depend directly on the nature of the end loss observed in the huse-
line airfoil tests. If the baseline tests indicate high corner losses without any
significant boundary layer separation, the control methods should be essentially
limited to those that tend to reduce boundary layer migration on the end wall,
e.g., end wall contouring and local uncambering. In the event that significant
corner separatjon is observed, end wall contouring and local uncambering should
still be beneficial since these methods have the potential of reducing hoth the
cross-flow pressure gradient causing boundary layer migration and the adverse
streamwise pressure gradient causing separation. The local momentum altera-
tion methods of corner slots and fillets should also be applied to reduce or
eliminate the separated region.

(U) As previously mentioned, it was not necessary to rank the various boundary
layer control methods according to their effectiveness for individual airfoils.
However, a tentative ranking is presented below, for any airfoil, based on the
two end loss situations considered possible,

a., Unseparated Corner Boundary Layer:

®  End wall contouring at root and tip
®  Local uncambering at root and tip

b. Separated Corner Boundary Layer:
End wall contouring
Local uncambering

Corner slots
Fillets.
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SECTION V1

SELECTION OF BASELINE TURBINE (Task le)

RFP OBJECTIVE
(U) To Fix The Two-Stage Turbine Baseline Design.

(U) The final choice of turbine configuration, including highly refined airfoil
contours, rests upon judgments formed from all the information assembled
and generated up to this point.

(U) The design system has i.dicated that a number of turbine configurations
are capable of meeting the performance requirements of this contract. In parti-
cular, the medium reaction, normal solidity turbine promises to meet the re-

quired goals in a configuration that would be practical and realistic. This normal

solidity is itself beyond the present state-of-the-art. Furthermore, the medium
reaction, lower solidity studies have shown that further improvement may be
possible. It should be reiterated, however, that the turbine design systems have
deliberately been pushed beyond their presently-established limits during this
study, and cannot yet be assumed to be entirely reliable.

(U) It has also been pointed out that the similarity of the resulting airfoil pres-
sure distributions makes differentiation between the various medium reaction
turbines, on the basis of boundary layer control, almost impossible. The most
important conclusion reached in the boundary layer control portion of this study
was that the physical manifestation of the end wall losses cannot be estahlished
in advance of experiments. Since the control of unseparated corner houndary
layers makes use of different techniques than the control of separated corner
boundary layers, the choice of applicable techniques must await the testing of
the baseline airfoils.

(U) As a result of such considerations, it is recommended that:
(1) The baseline turbine be the medium reaction, normal selidity design.
This choice is entirely consistent with the goals of the study and
with reasonably prudent application of existing analytical techniques.
(2) The baseline airfoils be carefully tested to determine the nature and

extent of the end loss mechanism before choosing and designing ap-
propriate boundary layer control techniques.
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(3) The rank order of control techniques for unseparated corner hound-
ary layers should be:

® End wall contouring at root and tip
®  Local uncambering at root and tip

’

while for separating corner layers it should be:

End wall contouring at root and tip
®  Local uncambering at root and tip
® Corner slots

®  Fillets in suction surface corners
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APPENDIX I

PRELIMINARY AIRFOIL SECTIONS
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